In addition to utility in ordinary desulfurizations, this method would serve uniquely in instances of carbonyl removal where the direct Wolff-Kishner procedure would be contraindicated, *e.g.*, with β -dicarbonyls or β -ketoesters (C-C cleavage),⁵ some α,β -unsaturated carbonyls (C=C migration),⁶ unstable α -substituted cycloalkanones (isomerized reduction products) and acyloins.⁷

Extension into the mechanism of this process and to other variously substituted sulfides including hemithioketals and sulfones is under investigation.

(5) H. Stetter and W. Dierichs, *Ber.*, **86**, 693 (1953), and earlier refs.
(6) R. Fischer, G. Lardelli and O. Jeger, *Helv. Chim. Acta*, **34**, 1577 (1951), and earlier references.

(7) R. B. Turner, R. Anliker, R. Helbling, J. Meier and H. Heusser, *ibid.*, **38**, 411 (1955), and earlier references herein to related systems.

Department of Chemistry	V. Georgian
Northwestern University	R. HARRISSON
EVANSTON, ILLINOIS	NANCY GUBISCH
D 0 00	1070

RECEIVED SEPTEMBER 23, 1959

STEREOCHEMISTRY OF BASE-CATALYZED HYDROGEN-DEUTERIUM EXCHANGE REACTIONS Sir:

In connection with our stereochemical studies of electrophilic substitution at saturated carbon,¹ we find that with hydrogen and deuterium as leaving

ōō	(CH ₃) ₃ COH	R–H
$(H_3)_2 \overset{\downarrow}{S} \xrightarrow{-} \cdots \overset{-}{R} \xrightarrow{+} \cdots \overset{\downarrow}{S} (CH_3)$)2	Race- mization

Symmetrically solvated anion

 $K \cdots OC(CH_3)_3$

	Starting	g mat.ª		Base-						
Run no.	Compn.	Conen., M	Solvent	Type	Concn., M	Temp., °C.	Time, hr.	Sexch. b	% Rac.¢	Net steric course ^d
1	Ih	0.41	$(CH_3)_3COD^e$	(CH ₃) ₃ COK	0.41	218	75	37	4	89% Ret.′
2	Id^{g}	. 26	$(CH_3)_3COH$	$(CH_3)_3COK$.26	225	69	73	9.5	87% Ret.
3	IIh	,11	$(CH_3)_3COD^e$	(CH ₃) ₃ COK	. 33	220	26	51	9.5	$80\%~{ m Ret.}'$
4	IId^h	.09	$(CH_3)_3COH$	$(CH_3)_3COK$. 55	220	10	13	1.8	88% Ret.
$\overline{5}$	IId^h	. 19	$(CH_3)_2 SO^i$	$(CH_3)_3COK$.26	85	14	31	31	Racem.

TABLE I

(C

^a Unless otherwise specified, starting material was optically pure. ^b Infrared analysis based on benzyl C-D band at 4.71 μ for Id and 4.725 μ for IId. ^c Optically pure starting materials had these observed rotations (l = 1 dm., neat): Ih, α^{25} D $\pm 24.3^{\circ}$; Id (91% d), α^{26} D $\pm 24.0^{\circ}$; IIh, α^{25} D $\pm 120.0^{\circ}$; IId, α^{27} D $\pm 120.0^{\circ}$ (97% d). ^d Stereospecificity, calculated without correcting for racemization of product once formed, or for any isotope effects. ^e 97% deuterated (combustion and water analysis). ^f Not corrected for incompletely deuterated solvent. ^e Material 87% optically pure, and 81% deuterated. ^h Optically pure, 97% deuterated (combustion and water analysis). ⁱ Dimethyl sulfoxide containing *tert*-butyl alcohol at a concentration of 2 molar.

groups, the reaction's course depends on solvent in a way similar to that when carbon is the leaving group.

C_2H_5	OCH3
C ₆ H ₅ C*L	$C_6H_5-C^+-L$
CH3	CH_3
Ih, L = H	IIh, $L = H$
Id, L = D	IId, $L = D$

The results indicate that hydrogen-deuterium exchange and the reverse reaction occur with high net retention in *tert*-butyl alcohol (runs 1–4), and with racemization in dimethyl sulfoxide (run 5). The values tabulated for the stereospecificity are minimal, since they are uncorrected for incompletely deuterated solvent (runs 1 and 3), or for racemization of product formed by stereospecific exchange reaction (runs 1–4).

Mechanistic schemes somewhat similar to those formulated for other leaving groups¹ would seem to apply.

(1) (a) D. J. Cram, J. Allinger and A. Langemann, *Chem. and Ind.*, 919 (1955); (b) D. J. Cram, A. Langemann, J. Allinger, K. R. Kopecky, F. Hauck, W. Lwowski, W. D. Nielsen and C. A. Kingsbury, THIS JOURNAL, **81**, 5740 to 5790 (1959).

DEPARTMENT OF CHEMISTRY	
UNIVERSITY OF CALIFORNIA	Donald J. Cram
at Los Angeles	CHARLES C. KINGSBURY
Los Angeles, California	BRUCE RICKBORN
RECEIVED AUGUS	г 27. 1959

CYCLOPROPANES. VI. RETENTION OF OPTICAL ACTIVITY AND CONFIGURATION IN THE CYCLOPROPYL CARBANION¹

Sir:

We have shown previously that a cyclopropyl carbanion which is formed by the reaction of lithium diisopropylamide² or sodium methoxide³ with 2,2-diphenylcyclopropyl cyanide is incapable of retaining its optical activity. It was recognized that the cyano grouping was playing a significant role in this racemization by participating in the delocalization of the negative charge. We wish to report some experiments which have a bearing on this question. Optically active 1-bromo-1-methyl-

(2) H. M. Walborsky and F. M. Hornyak, This Journal, **77**, 6126 (1955).

(3) H. M. Walborsky and F. M. Hornyak, ibid., 78, 872 (1956).

⁽¹⁾ This work was supported by a grant from the National Science Foundation.